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Macroscopic equations for pattern formation in mixtures of microtubules and molecular motors
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Inspired by patterns observed in mixtures of microtubules and molecular motors, we propose continuum
equations for the evolution of motor density and microtubule orientation. The chief ingredients are the trans-
port of motors along tubules, and the alignment of tubules in the process. The macroscopic equations lead to
aster and vortex patterns in qualitative agreement with experiments. While the early stages of evolution of
tubules are similar to coarsening of spins following a quench, the rearrangement of motors leads to arrested
coarsening at low densities. Even in one dimension, the equations exhibit a variety of interesting behaviors,
such as symmetry breaking, moving fronts, and motor localization.
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I. INTRODUCTION

The emergence of complex patterns and correlated fl
tuations is a characteristic of many out of equilibrium situ
tions @1,2#. Living organisms provide many examples, ran
ing from the flocking of birds @3,4# and the social
organization of bacterial colonies@5–7# to internal reorgani-
zation of a cell during division@8,9#.

At the molecular level, motors and microtubules are f
quently the ingredients responsible for construction and m
tion. Molecular motors are the proteins that convert chem
energy to mechanical energy, and have been extensi
studied@10–12#. Microtubules, consisting of a subunit pro
tein called tubulin, provide the scaffolding for many ce
constructs, as well as ‘‘railways’’ for transport of protein
@13,14#. In particular, microtubules have a polarity that pr
vides a direction for the transport of motors.

One of the many processes in which motors and micro
bules are involved is cell division, during which tubules o
ganize to form a mitotic spindle@8,9#. To elucidate some o
the physical mechanisms involved, severalin vitro experi-
ments on mixtures of microtubules and motors have b
carried out@15–17#. Even these simple mixtures result
interesting patterns: At an initial stage the microtubules fo
an ‘‘aster’’ with their ‘‘plus’’ ends pointing toward a center
The kinesin based beads move along the microtubules
ward this center. In a confined geometry, the aster patter
then destabilized, giving way to a vortex in which the moto
rotate around a center. In unconfined geometries, a varie
self-organized patterns are obtained upon varying the m
concentration. With increasing concentration, an array
vortices, a mixture of asters and vortices, a collection
asters, and bundles of microtubules emerge.

The motivation of this paper is to describe the patte
observed in thein vitro experiments. At the outset, it is im
portant to point out that there are fundamental differen
between these artificial constructs and the situation in a
ing cell. First, the experiments use the simplest possible m
ture of a single type of motor~kinesin! and microtubules,
whereas many more molecules are involved inside a c
Secondly, to best visualize the patterns, the mixture is c
fined in two-dimensionalchambers etched in glass. Finall
1063-651X/2001/64~5!/056113~8!/$20.00 64 0561
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Nédélec et al. @16# employed an artificial molecular con
struct consisting of four two-headed kinesin molecu
linked by biotin-streptavidin. These motor complexes can
tach to two nearby tubules and their motion along the t
provides a force that makes them parallel. It is not clear w
mechanism operates to align the tubules inside a cell.
experiments, however, have the advantage of simplicity,
can probe the evolution of patterns as a function of a f
parameters. The focus of this paper is thus mainly on
artificial situation of mixtures of one type of motor wit
tubules in two dimensions. Some conjectures about more
alistic situations are given at the end.

There are in fact already several models of this system
the literature, starting with the simulations reported in t
original paper on the patterns@16#. The microscopic ap-
proach of these simulations is well suited for describing
evolution of individual tubules, but is computationally cost
for generating large scale patterns. Macroscopic equat
which ignore details at short distances are better suited
probing structure at large scales, and can also provide
lytical insights. For example, inhomogeneous stripe patte
in two dimensions are predicted by considering a mac
scopic field describing tubule orientations@18#. Another re-
cent model introduces a convection-diffusion equation fo
motor density field in the presence of a given microtub
array. This model results in a density profile of motors
asters that decays as a power law@19#. In this paper we
combine elements from these macroscopic models and
sider the coevolution of two continuous fieldsm(rW,t) and
TW (rW,t), describing the local motor density and tubule orie
tation, respectively.

Aiming for a minimal description of the observed fe
tures, we incorporate only two inputs into the evolutio
equations for the fields:~i! the motor density is transporte
along the tubules, while~ii ! the tubules are in turn aligned b
the motors. We find that simulations of the resulting equ
tions indeed reproduce asters and vortices in agreement
experiment. Analytical solutions of the equations provi
further insights into the patterns. For example, we find t
the motor density is much larger close to the center of
aster than in a vortex. The resulting increased strain ene
©2001 The American Physical Society13-1
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on the tubules provides a driving force for asters to break
to form vortices, in qualitative agreement with experimen
In writing continuum evolution equations for densities, w
are following recent studies modeling the flocking of bir
@3,4# and the organization of growing bacteria@5–7#.

The global evolution of the tubule pattern is sensitive
the initial density of motors. At high density, it is similar t
coarsening ofXY spins following a quench from high tem
peratures@20–24#. With periodic boundary conditions, th
ultimate pattern is one of aligned tubules, with the mot
going around in a uniform current. Such a pattern is
possible with closed boundary conditions, which typica
lead to a single vortex in the center. At lower densities, fl
tuations play a strong role, and we observe the phenome
of arrested coarsening, in which an inhomogeneous patte
of tubules freezes at some point in time. This occurs beca
the transport of motors produces regions in which the den
of motors is very low~effectively zero!. When such regions
percolate throughout the system, no further rearrangeme
tubules is possible.

To better understand the dynamics of coarsening and s
of the arrested domains, we also simulated the equation
one dimension. Even in this case, the equations exhib
variety of interesting patterns that depend on the bound
conditions.~i! With periodic boundary conditions, there is
phase transition between a state with a uniform curren
motors running along tubules aligned in one direction~at
high motor densities!, and one in which there is a localize
cluster of motors moving at constant velocity around
system~at low densities!. Note that both patterns correspon
to a broken symmetry~of the two possible tubule orienta
tions! in one dimension. In contrast to the equilibrium Isin
model, this symmetry breaking appears to persist in the p
ence of noise~mimicking finite temperatures!. ~ii ! Reflecting
boundary conditions lead to an oscillating front sweep
back and forth across the system, yet another solitonic s
tion to the equations.~iii ! Closed boundary conditions giv
rise to initial coarsening and eventual freezing of the tubu
into domains. The domain size for frozen tubules depend
the value of the average motor density. Unlike its tw
dimensional counterpart, the motor density continues
evolve after the tubules are frozen, and all motors are ev
tually localized in one cluster.

II. MODEL

Having introduced the local motor densitym(xW ,t), and
the tubule orientation fieldTW (xW ,t), we would like to explore
their evolution in time. There is no simple prescription f
devising field equations for nonequilibrium steady sta
driven by ATP ~adenosine triphosphate! hydrolysis. How-
ever, symmetries and conservation laws can be used
guides, and provide strong constraints. The conservatio
motors leads to the continuity equation

]m

]t
52¹W •JWm , ~1!

where for the motor current we shall assume the form
05611
ff
.

s
t

-
on

se
ty

of

es
in
a
ry

f

e

s-

g
u-

s
n

-
o
n-

s

as
of

JWm52D¹W m1AmTW 1•••. ~2!

Here, D is the diffusion constant for motors, whileA is a
coefficient describing their~ATP assisted! transport along
the tubule directionTW . We have explicitly included only the
lowest order terms in an expansion in powers ofm. Higher
order terms, such asBm2TW are expected and may becom
important at high motor densities.

For the evolution of the tubule orientation fieldTW , we
shall employ a similar expansion in small powers, which d
to its vectorial character takes the form

]TW

]t
5aTW 2bT2TW 1k¹2TW 1gm¹2TW 1g8¹W m•¹W TW 1•••1 fW .

~3!

The ‘‘local’’ terms proportional toa and b describe indi-
vidual tubules: the linear term gives the tendency for sh
tubules to grow, while the nonlinear term stops growth
longer tubules mimicking their stabilization by taxol@14#.
Dynamical variations in length can be incorporated with
random noisefW(xW ,t). This noise will be mostly ignored in the
discussion of patterns, where the initial conditions prov
the source of randomness. Neighboring tubule orientati
can be coupled through a number of gradient terms. Sinc
the experiments the alignment of tubules is mediated only
motors, we shall setk50. For simplicity, we also assum
that g5g8, such that

]TW

]t
5aTW 2bT2TW 1g¹W •~m¹W TW !. ~4!

The final simplification has the virtue of making the evol
tion of TW similar to the familiar minimization of an energ
function proportional to*@2aT2/21bT4/41gm(¹TW )2/2#.
This is similar to the Landau-Ginzburg energy for vector
spins, but with a strain energy that is proportional to the lo
density of motors.

Even the minimal equations involve several paramete
We can bring the equations into simpler form by rescaling

]m

]t
5¹2m2¹W •~mTW !, ~5!

]TW

]t
5CTW ~12T2!1¹W •~m¹W TW !, ~6!

where we now measure length in units ofAb/aD/A, time in
units of bD/(aA2), motor density in units ofD/g, and the
tubule density vector in units ofAa/b. The remaining pa-
rameterC is given bybD/A2.

III. SIMULATIONS

We perform numerical simulations on a two-dimension
L3L lattice, adapting the Crank-Nicholson scheme with t
alternating direction implicit operator splitting method@25#.
The equations are discretized with spatial intervals
3-2
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MACROSCOPIC EQUATIONS FOR PATTERN FORMATION . . . PHYSICAL REVIEW E 64 056113
Dx5Dy51 and time intervals ofDt51022. At the edges of
a finite system, we employ one of several possible bound
conditions.Reflecting boundarieshave fixed inward pointing
microtubules described by

TW uboundary52n̂, ~7!

wheren̂ is the normal outward vector at the boundary. Th
discourages motors from approaching an edge. By cont
with parallel boundary conditionsthe microtubules are tan
gential to the boundaries, whileclosed boundary condition
place no restriction on the tubules. In all these cases, the
no current transporting motors outside the system. Ther
no constraint on the motor current whenperiodic boundary
conditionsare applied, although again the total number
motors is conserved. The actual boundary condition co
sponding to a given experiment will depend on the inter
tion of the tubules with the confining surfaces. Surface tre
ments can in principle be applied to favor reflecting
parallel microtubules.

We start with an initial condition in which the motor den
sity is uniformly set tom0 at all points, while the tubule field
has magnitudeuTW 0u51023 and random orientations. After
transient period, the homogeneous configuration s
organizes into patterns that depend on the value of ave
motor densitym0, as well as the growth constantC. Figure
1~a! shows a mixture of vortices and asters which arises
the stationary pattern form050.01. Both asters~tubules
pointing inward! and vortices~tubules going around! are
clearly visible and randomly arranged throughout the syst
The motor density now becomes inhomogeneous, with m
tors accumulating in the centers of vortices and asters@Fig.
1~b!#. The asters are more visible and dominant as the in
motor density increases, as shown form050.15 in Fig. 2~a!.
However, higher densities lead to a single vortex as in F
2~b! for m050.5 @26#.

The dynamics of formation of a large vortex from th
random initial conditions is depicted in Fig. 3. This figu
corresponds to reflecting boundary conditions, withC510
andm050.15. Since the initial tubule length is smaller th
unity, the first stages of evolution are the lengthening
tubules as depicted in Figs. 3~a! and 3~b!, for times t50.6
and t51, respectively. During this stage, the directions
the tubules do not change and they remain randomly dis
uted. The next stage involves reorientations of the tubu
Since a uniform alignment is incompatible with the bounda
conditions, an aster forms in the center as depicted in
3~c!, for t5120. Motors are now transported along the
bules and accumulate at the center of the aster. At lon
times, the aster pattern gives way to a vortex as in Fig. 3~d!
for t51200. The vortex pattern is stable, although its cen
may move around depending on the choice of boundary c
ditions@26#. This dynamics is consistent with the experime
tal observation that vortices form from the destabilization
asters@16#.

To model pattern formation in larger systems in whi
boundary effects are less important, we also performed si
lations with closed boundary conditions. This change in
boundary condition does not qualitatively alter the patt
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formation process. At low motor densities, we still observ
mixture of vortices and asters, followed by a collection
asters asm0 is increased. However, at large motor densi
after formation of a large vortex at the center, motors a
pile up at several points on the boundary, as indicated
Fig. 4.

Equations~5! and ~6! are deterministic, the only stochas
ticity appearing through the initial conditions. However, ra
domness and noise are certainly present in the experime
situations. In particular, microtubules are known to co
stantly grow and shrink though a dynamic instability@13,14#,
while asters are still observed under such conditions@27#. To
make sure that the patterns observed in our simulations
vive the addition of noise, we also introduced a stocha

FIG. 1. ~a! A collection of vortices and asters form050.01 and
C5100. The initial size of the tubules is 1023, while their direc-
tions are random. The symbolsA and V represent an aster and
vortex, respectively.~b! The corresponding profile of motor density
Gray scale indicates the value of motor density; darker shades
dicate smaller values of motor density. The initial homogene
density evolves to obtain peaks at the centers of asters and vor
3-3
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HA YOUN LEE AND MEHRAN KARDAR PHYSICAL REVIEW E 64 056113
FIG. 2. ~a! A collection of asters and vortices form050.15 and
C5100. The aster patterns become dominant.~b! A large vortex for
m050.5 andC5100. At sufficiently high densities of motors, on
or several vortices are formed.

FIG. 3. The evolution of a vortex from an aster at timest
50.6 ~a!, t51 ~b!, t5120 ~c!, andt51200~d!. The random initial
pattern of tubules first grows in length and then organizes as
aster. Motors accumulate at the center of the aster and then c
around when it changes to a vortex.
05611
noise in the tubule evolution equation. We observed that
self-organized patterns are stable at small noise, but that
ficiently large noise causes a phase transition to homo
neous mixtures~bundles of microtubules in a uniform moto
density!. Alternatively, we observe that, for a fixed amou
of noise, patterns are destroyed at motor densities lower
a critical mc , but are qualitatively unchanged otherwis
~The value ofmc is 0.005 if the noise is distributed uni
formly between21 and 1.!

IV. ASTER AND VORTEX SOLUTIONS

We can easily find analytical solutions to Eqs.~5! and~6!
that describe the motor density in the center of an aste
vortex. To this end, we look for stationary solutions] tmW

5] tTW 50W with radial symmetry. In an aster the tubules a

n
cle

FIG. 4. The configuration of tubules form050.5, with closed
boundary conditions~a!, and the corresponding profile of moto
density ~b!. Motors pile up at several points on the boundary,
addition to in the interior.
3-4
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MACROSCOPIC EQUATIONS FOR PATTERN FORMATION . . . PHYSICAL REVIEW E 64 056113
directed toward the center andTW 52 r̂ , where r̂ is the unit
radial vector. Balancing the diffusive current2] rm with that
transported along tubules gives an exponential form:

master~r !5m~0!exp~2r !. ~8!

This exponential profile is indeed verified by the simulatio
as depicted in Fig. 5~a!.

The tubules go around the center of a vortex, andTW 5 û,
whereû indicates the tangential unit vector. Motors are th
transported in a uniform circular current by the tubules.
ensure that there is no radial current of motors we n
] r(r ] rm)50, whose solution is

mvortex~r !52M ln~r /R!, ~9!

whereR is a long distance cutoff, of the order of the vorte
size. A logarithmic fit to the simulated vortex motor dens
profile is shown in Fig. 5~b!.

The profile of motors in quasi-two-dimensional asters h
been studied theoretically and experimentally in Ref.@19#. In

FIG. 5. ~a! The points represent the profile of motor density
an aster pattern for m050.1 andC5100. The dashed line is a
least-squares fit to the exponential decay 35.4 exp(2r). ~b! The
simulated profile of the motor density of avortex for m050.2 and
C51. The dashed line is the least-squares fit to the fo
23.3 ln(r/14.2).
05611
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this study the tubules can grow to form quite long tracks, a
their density also falls off away from the aster center. The
differences in tubule behavior~as opposed to our case whe
tubules have uniform density and length! lead to predicted
power law decays of the motor density profile.

The aster and vortex configurations of tubules are rela
to topological defects in theXY model. However, they are
equivalent defects in theXY model as one can be deforme
into the other through a 90° rotation. The presence and r
rangement of motors in our problem breaks this symme
and the two configurations become inequivalent. In parti
lar, the two defects have very different static energiesE
}*d2rm(r )(¹T)2/2. In the aster, the motors are conce
trated close to the center leading to a high strain energy.
contrast, the motor density in a vortex is more uniform. Co
sequently, for the same number of motors, a large aster
much higher energy than a large vortex. Since the dynam
tends to minimize this energy, we have an explanation
why asters give way to the more stable vortices. Presuma
finite size effects in smaller asters, of the order of the de
length implicit in Eq.~8!, account for their stability at smal
motor densities as in Fig. 2~a!.

V. ARRESTED COARSENING

If the motor density is maintained at a uniform and fix
value, the dynamics of the tubules is identical to the coa
ening of anXY system following a quench from high tem
peratures. This problem has been extensively studied@20–
24# and ~up to logarithmic corrections! the typical length
scale of the pattern coarsens asj;t1/2. In our case, the mo-
tors rearrange themselves in the landscape of the tubules
the coarsening scenario is modified when the motor den
fluctuations become significant.

At high motor densities there are enough motors left o
after formation of asters and vortices to cause further re
rangements of the tubules, and coarsening continues tow
the final pattern consistent with the boundary conditio
However, at low densities the motors quickly migrate to t
centers of asters and vortices. The little motor density lef
the regions between defects may then be too small to ca
further realignment of tubules which became frozen. We c
this phenomenonarrested coarseningof tubules. The limit-
ing value ofm0 for the onset of arrested coarsening in fa
depends on the growth constant of tubulesC, as indicated by
the tentative ‘‘phase diagram’’ sketched in Fig. 6. Mo
simulations are necessary to establish the presence an
ture of this transition.

VI. ONE DIMENSION

To further understand the patterns, we examine the eq
tions in one dimension, where more detailed simulations
possible. In particular, we consider scalar fieldsm(x,t) and
T(x,t) evolving as

] tm5]x
2m2]x~Tm!, ~10!

] tT5C~T2T3!1]x~m]xT!. ~11!
3-5
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HA YOUN LEE AND MEHRAN KARDAR PHYSICAL REVIEW E 64 056113
Quasi-one-dimensional movement of myosin motors occ
along bundles of actin filaments in muscle contraction, a
may also be responsible for other types of cell motion@8#.
Bundles of actin molecules can be formedin vitro in mix-
tures with other inert polymers. These bundles consis
random mixtures of actin molecules oriented in the two p
sible directions. However, in the presence of myosin mot
and ATP, there is a sorting of polarity@28,29# and active
contraction of polar filaments@30#. To describe such a con
traction we need to incorporate additional terms describ
the transport of tubules along tubules.

A potential experimental setup for the above equation
a modified version of that used in Ref.@16#, with motor/
tubule mixtures confined in quasi-one-dimensional chann
etched in glass. In addition to periodic channels, it may
possible to model closed and reflecting boundaries by ap
priate treatment of the edges. In fact, we observe that
solutions to Eqs.~10! and ~11! are quite sensitive to bound
ary conditions. Specifically, simulations show the followin
results.

(i) Periodic boundary conditionscorrespond to placing
the system on a closed loop. We observe two types of s
metry breaking depending on the initial density of motors
m0 is larger than a critical value ofmc (mc'0.04 for C
51), the tubule pattern coarsens until the tubules are
aligned in one direction (T511 or 21). This is accompa-
nied by a uniform current of motors that goes around
system. This symmetry breaking is similar to that of an Is
model. However, unlike the equilibrium Ising model, he
the broken symmetry survives in the presence of rand
noise ~simulating finite temperatures! in Eq. ~11!. Any do-
mains of opposite spin formed due to randomness are
nealed by a rush of motors to the domain walls. The symm
try breaking in the presence of noise is due to the advec
term in Eq.~10! and active transportation of motors along t
tubules. Indeed we checked that when the advection ter
removed, the presence of noise in Eq.~11! leads to finite
domains.

FIG. 6. The phase boundary in the plane ofm0 and log10 C. To
the right of the boundary the pattern coarsens to a large vortex.
arrested coarsening on the left side leads to frozen asters and
tices, with the aster pattern becoming more dominant asm0 in-
creases.
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If m0 is smaller thanmc , a final state emerges in whic
the motors gather together in a cluster that moves around
loop with a constant velocity. The tubules are again orde
in one direction, except near the cluster, where they brie
take the opposite alignment. Figure 7~a! shows the configu-
rations of the tubules and the profile of the motor density
m050.02,mc . We have verified by direct numerical inte
gration that Eqs.~10! and ~11! do indeed support such
solitonic solution. However, the mathematical details are
in the spirit of this article, and will be presented elsewhe

(ii) Reflecting boundary conditionswere imposed by re-
quiring the tubules at the edges to point inward, i.e.,@T(0)
511 andT(L)521]. There is an initial coarsening perio
in which domains of11 and 21 grow inward from the
respective edges. However, in the final pattern the bound
between the11 and 21 domains is not stationary, bu
sweeps back and forth across the system. The motors
again concentrated at the interface, with a solitonic profile
indicated in Fig. 7~b!.

(iii) Closed boundary conditionswere also applied, with
no restrictions on the value ofT at the edges, but setting th
outward motor current to zero. Above a critical motor de
sity, coarsening of tubules proceeds to a single domain of
size of the system,L. Following the tubules, the motors the
pile up at one end of the system. The low density behavio
this case is similar to the arrested coarsening observed in
two-dimensional case: The initial growth of11 and 21
domains is stopped at some point due to the local absenc
motors necessary for continuing realignments. Figure 7~c!
shows the average domain size, as a function of the ave

he
or-

FIG. 7. The profiles of motor density~dashed line! and tubule
orientation~solid line! in one dimension with~a! periodic boundary
conditionsfor m050.02 andC51 and~b! reflecting boundary con-
ditions for m050.4 andC51. In ~a!, the whole pattern moves a
indicated by the arrow, with a fixed speed. In~b!, the cluster of
motors moves as indicated by the arrow, but its direction is rever
at each boundary, as the profile oscillates back and forth.~c! The
average tubule domain size in a one-dimensional system of lengL
with closed boundary conditions, as a function of average mo
density m0 for C51. ~d! The profiles of tubule orientation an
motor density~solid and dashed lines, respectively! for m050.1 and
C51, in a one-dimensional system with closed boundaries.
3-6
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MACROSCOPIC EQUATIONS FOR PATTERN FORMATION . . . PHYSICAL REVIEW E 64 056113
motor density. At the point when tubule evolution is stopp
the motor density has peaks at (1,2) domain boundaries
However, as time goes on, there is a slower ripening proc
in which the motors gradually diffuse against the unfav
able domains, and eventually aggregate at one point in
system, as in Fig. 7~d!. ~It is not clear if this process is truly
absent in two dimensions, or merely takes too long to
serve in simulations. There are similarities to the localizat
problem in which 2 is a critical dimension.!

There are similarities in the above behaviors to patte
and phase transitions in other one-dimensional nonequ
rium processes. A localization transition is observed in
population with diffusion, drift, and reproduction in Ref
@31–33#. This model of a bacterial colony living on an oas
in the presence of randomly fluctuating wind shows e
tended, localized, mixed states, as well as extinction, a
function of the average growth rate and convection veloc
In our model, the tubules~in their disordered state! provide a
similar source of random advection. Ordered states are
observed in a lattice model with two species of particles
which the mobility of one species depends on the density
the other@34,35#. This model exhibits three phases: one w
strong phase, a fluctuation-dominated phase, and ano
with uniform overall density. The couplings in our syste
between motors and tubules have similarities to the la
model, although the enforced conservation laws are diffe
~there is no conservation of tubule orientations!.

VII. DISCUSSION

As in the case of driven diffusive systems~see Ref.@36#
for a recent review!, the rich variety of behavior observed i
the relatively simple equations introduced in this paper is
to their nonequilibrium character. In the realm of equili
rium, for example, one-dimensional systems at nonzero t
perature are featureless and disordered. Clearly, nonequ
rium effects can lead to symmetry breaking, and a r
interplay of behaviors sensitive to boundaries. Biologi
systems can take advantage of such phenomena, and s
indeed provide many interesting patterns in need of expla
tion. We conclude by reviewing the successes and failure
our macroscopic modeling of the motor/tubule patter
pointing out potential extensions and avenues for further
ploration.

Given how little input is used to construct the macr
scopic equations~tubules transport motors and are aligned
the process!, it is encouraging that many features of the e
e
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perimental patterns are reproduced. As in the experime
we observe arrays of asters and vortices, and large si
vortices ~formed from the breakup of asters!. A surprising
general outcome is the robustness of the patterns to exte
noise. Many of the large scale features observed~symmetry
breaking or large vortices! are easily destroyed in equilib
rium by thermal noise, but are maintained in the nonequi
rium steady states.

The limitations of the model are also due to the limit
input. For example, at high densities of motors the exp
ments lead to irregularly arranged bundles of tubules; a
ture not present in our model. To reproduce the obser
sequence of patterns, more physical input into the equat
is necessary. A potential modification is to impose a satu
tion on the ability of motors to align tubules at high mot
densities. Indeed, such saturation generates an irregular
tern of tubules, instead of a large vortex, at high motor d
sities.

A simple yet relevant extension of our model is to co
sider mixtures of tubules with two types of motor, kines
and dyenin, which are transported in opposite directio
@37#. Preliminary simulations indicate various patterns su
as asters, antiasters, and vortices, but a global phase dia
has not yet been constructed. Another interesting extensio
to examine the patterns predicted by the model in three
mensions; corresponding simulations are straightforward
beit more time consuming.

Independent of their relevance to the motor/tubule syst
the equations presented in this paper exhibit a variety
interesting behavior worthy of further investigation. Fro
the perspective of statistical mechanics it is interesting
rigorously characterize the distinct phases encountered,
the nature of the transitions between them. The symm
breakings in one dimension are particularly interesting
they do not have equilibrium counterparts. The solitonic
lutions to these equations can be further explored by stan
mathematical methods. Finally, with a view to describing t
contraction of muscle fibers, the addition of drift terms to t
equation for tubules is desirable.
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