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Macroscopic equations for pattern formation in mixtures of microtubules and molecular motors
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Inspired by patterns observed in mixtures of microtubules and molecular motors, we propose continuum
equations for the evolution of motor density and microtubule orientation. The chief ingredients are the trans-
port of motors along tubules, and the alignment of tubules in the process. The macroscopic equations lead to
aster and vortex patterns in qualitative agreement with experiments. While the early stages of evolution of
tubules are similar to coarsening of spins following a quench, the rearrangement of motors leads to arrested
coarsening at low densities. Even in one dimension, the equations exhibit a variety of interesting behaviors,
such as symmetry breaking, moving fronts, and motor localization.
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I. INTRODUCTION Neddec et al. [16] employed an artificial molecular con-
struct consisting of four two-headed kinesin molecules
The emergence of complex patterns and correlated fludinked by biotin-streptavidin. These motor complexes can at-
tuations is a characteristic of many out of equilibrium situa-tach to two nearby tubules and their motion along the two
tions[1,2]. Living organisms provide many examples, rang-provides a force that makes them parallel. It is not clear what
ing from the flocking of birds[3,4] and the social mechanism operates to align the tubules inside a cell. The
organization of bacterial coloni¢5—7] to internal reorgani- experiments, however, have the advantage of simplicity, and
zation of a cell during divisiori8,9]. can probe the evolution of patterns as a function of a few
At the molecular level, motors and microtubules are fre-parameters. The focus of this paper is thus mainly on the
quently the ingredients responsible for construction and moartificial situation of mixtures of one type of motor with
tion. Molecular motors are the proteins that convert chemicajypules in two dimensions. Some conjectures about more re-
energy to mechanical energy, and have been extensiveljstic situations are given at the end.
studied[10-12. Microtubules, consisting of a subunit pro-  There are in fact already several models of this system in
tein called tubulin, provide the scaffolding for many cell e |iterature, starting with the simulations reported in the
constructs, as.well as | railways” for transport .of proteins original paper on the patterrid6]. The microscopic ap-
[13,14. In particular, microtubules have a polarity that pro- proach of these simulations is well suited for describing the

vides a direction for the transport of motors, . evolution of individual tubules, but is computationally costly
One of the many processes in which motors and microtu;

bules are involved is cell division, during which tubules or- ©F 9€nerating large scale patterns. Macroscopic equations
ganize to form a mitotic spindI8,9]. To elucidate some of Wth!’] ignore details at short distances are better su_|ted for
the physical mechanisms involved, severalvitro experi- probing structure at large scales, and can also provide ana-
ments on mixtures of microtubules and motors have beeh’t'cal insights. For example, inhomogeneous stripe patterns

carried out[15—-17. Even these simple mixtures result in In two dimensions are predicted by considering a macro-

interesting patterns: At an initial stage the microtubules formpeOPIC field describing tubule orientatiof8]. Another re-

an “aster” with their “plus” ends pointing toward a center cent model introduces a convection-diffusion equation for a

The kinesin based beads move along the microtubules tgnotor denSity field in the presence .Of a giyen microtubqle
ward this center. In a confined geometry, the aster pattern gray. This model results in a density prof|l.e of motors in
then destabilized, giving way to a vortex in which the motorsaSterS. that decays as a power lai9)]. In _th|s paper we
rotate around a center. In unconfined geometries, a variety &_ombme elements_from these mat_:roscoplf: mo<1e|s and con-
self-organized patterns are obtained upon varying the motctider the coevolution of two continuous fields(r,t) and
concentration. With increasing concentration, an array off(r,t), describing the local motor density and tubule orien-
vortices, a mixture of asters and vortices, a collection oftation, respectively.
asters, and bundles of microtubules emerge. Aiming for a minimal description of the observed fea-
The motivation of this paper is to describe the patterndures, we incorporate only two inputs into the evolution
observed in thén vitro experiments. At the outset, it is im- equations for the fielddi) the motor density is transported
portant to point out that there are fundamental differenceslong the tubules, whiléi) the tubules are in turn aligned by
between these artificial constructs and the situation in a livthe motors. We find that simulations of the resulting equa-
ing cell. First, the experiments use the simplest possible mixtions indeed reproduce asters and vortices in agreement with
ture of a single type of mototkinesin and microtubules, experiment. Analytical solutions of the equations provide
whereas many more molecules are involved inside a celffurther insights into the patterns. For example, we find that
Secondly, to best visualize the patterns, the mixture is conthe motor density is much larger close to the center of an
fined in two-dimensionakthambers etched in glass. Finally, aster than in a vortex. The resulting increased strain energy
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on the tubul_es prqwdes a d.r|V|ng force for a;ters to break off jm: —DVm+AmT+---. (2)

to form vortices, in qualitative agreement with experiments.

In writing continuum evolution equations for densities, we Here, D is the diffusion constant for motors, whilg is a
are following recent studies modeling the flocking of birds coefficient describing theifATP assistell transport along

[3,4] and the organization of growing bactefB=7. ~  he tubule directior. We have explicitly included only the
The global evolution of the tubule pattern is sensitive t0|gwest order terms in an expansion in powersofHigher

the initial density of motors. At high density, it is similar to P
. . . . order terms, such aBnrT are expected and may become
coarsening oXY spins following a quench from high tem- . . »
important at high motor densities.

perature§ 20—24. With periodic boundary conditions, the . ) ) =
ultimate pattern is one of aligned tubules, with the motors FOr the evolution of the tubule orientation field, we
going around in a uniform current. Such a pattern is notshz_ill employaS|m|Iar expansion in small powers, which due
possible with closed boundary conditions, which typicallyO its vectorial character takes the form

lead to a single vortex in the center. At lower densities, fluc- -

tuations play a strong _role, gnd We_observe the phenomenoﬁ_: af—BT2f+ KV2T+ ymV2T+ 5/ Vm- VT +- - +F.

of arrested coarseningn which an inhomogeneous pattern dt

of tubules freezes at some point in time. This occurs because 3

the transport of motors produces regions in which the densit . . . L
of motors is very low(effectively zerg. When such regions The “local” terms proportional toa and 8 describe indi-

percolate throughout the system, no further rearrangement idual twbules: the I|_near term gives the tendency for short
tubules is possible. ubules to grow, while the nonlinear term stops growth of

To better understand the dynamics of coarsening and Siz%nger _tubules. mlmlcklng their stab|l|zqt|on by tax[jl4]:

of the arrested domains, we also simulated the equations i ynamical V%I‘I?IIOI’IS in length can be incorporated with a
one dimension. Even in this case, the equations exhibit £andom noisé (x,t). This noise will be mostly ignored in the
Variety Of interesting patterns tha‘[ depend on the boundargiscussion of patterns, where the initial conditions prOVide
conditions.(i) With periodic boundary conditions, there is a the source of randomness. Neighboring tubule orientations
phase transition between a state with a uniform current ofan be coupled through a number of gradient terms. Since in
motors running along tubules aligned in one directia the experiments the alignment of tubules is mediated only by
high motor densities and one in which there is a localized motors, we shall sek=0. For simplicity, we also assume
cluster of motors moving at constant velocity around thethaty=1y’, such that

system(at low densities Note that both patterns correspond =
to a broken symmetryof the two possible tubule orienta- 3__ = o= > > 2
tions) in one dimension. In contrast to the equilibrium Ising ot aT =BT T+yV-(mVT). “

model, this symmetry breaking appears to persist in the pres-

ence of noisémimicking finite temperatures(ii) Reﬂecting The fln%l Simplification has the virtue of making the evolu-
boundary conditions lead to an oscillating front sweepingtion of T similar to the familiar minimization of an energy
back and forth across the system, yet another solitonic soltfunction proportional tof[ — aT2/2+ BT*/4+ ym(VT)?%/2].

tion to the equationsliii) Closed boundary conditions give This is similar to the Landau-Ginzburg energy for vectorial
rise to initial coarsening and eventual freezing of the tubulegpins, but with a strain energy that is proportional to the local
into domains. The domain size for frozen tubules depends 0gensity of motors.

the value of the average motor density. Unlike its two-  Even the minimal equations involve several parameters.

dimensional counterpart, the motor density continues taye can bring the equations into simpler form by rescaling to
evolve after the tubules are frozen, and all motors are even-

tually localized in one cluster. om

_ 2n_V. T
at—V m—V-(mT), (5)

Il. MODEL

>

- aT - - -
Having introduced the local motor density(x,t), and EZCT(l—Tz)'f'V-(mVT), (6)
the tubule orientation fiel(f'(i,t), we would like to explore

their evolution in time. There is no simple prescription for where we now measure length in units\d8/aD/A, time in
devising field equations for nonequilibrium steady statesynits of D/(aA2), motor density in units oD/, and the

driven by ATP (adenosine triphosphatéiydrolysis. How-  y,pyle density vector in units of/a/8. The remaining pa-
ever, symmetries and conservation laws can be used @§meterC is given by BD/A2.

guides, and provide strong constraints. The conservation of
motors leads to the continuity equation Il SIMULATIONS
am_ _¥.j ) We perform numerical simulations on a two-dimensional
a m> L XL lattice, adapting the Crank-Nicholson scheme with the

alternating direction implicit operator splitting meth@2b].
where for the motor current we shall assume the form The equations are discretized with spatial intervals of
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Ax=Ay=1 and time intervals oAt=10"2. At the edges of

a finite system, we employ one of several possible boundary
conditions.Reflecting boundarielsave fixed inward pointing
microtubules described by

ﬂ boundary~ — ﬁ, (7)

wheren is the normal outward vector at the boundary. This ¥
discourages motors from approaching an edge. By contrast
with parallel boundary conditionshe microtubules are tan-
gential to the boundaries, whildosed boundary conditions
place no restriction on the tubules. In all these cases, there i
no current transporting motors outside the system. There is
no constraint on the motor current whperiodic boundary
conditionsare applied, although again the total nhumber of (a)
motors is conserved. The actual boundary condition corre-
sponding to a given experiment will depend on the interac-
tion of the tubules with the confining surfaces. Surface treat-
ments can in principle be applied to favor reflecting or
parallel microtubules.

We start with an initial condition in which the motor den-
sity is uniformly set tamg at all points, while the tubule field

has magnitudéT,|=10"2 and random orientations. After a
transient period, the homogeneous configuration self-
organizes into patterns that depend on the value of averag
motor densitym,, as well as the growth consta@t Figure Y
1(a) shows a mixture of vortices and asters which arises as
the stationary pattern fomy=0.01. Both asterqtubules
pointing inward and vortices(tubules going aroundare
clearly visible and randomly arranged throughout the system
The motor density now becomes inhomogeneous, with mo-
tors accumulating in the centers of vortices and adteigs
1(b)]. The asters are more visible and dominant as the initial
motor density increases, as shown fag=0.15 in Fig. Za).
However, higher densities lead to a single vortex as in Fig.
2(b) for my=0.5[26].

The dynamics of formation of a large vortex from the
random initial conditio_ns is depicted in F_ig. 3. This figure g 1. () A collection of vortices and asters for,=0.01 and
corresponds to reflecting boundary conditions, Witk 10 c=100. The initial size of the tubules is 18 while their direc-
and m0:015 Slnce the |n|t|a| tubule Iength |S Sma”el’ than tions are random. The Symbok andV represent an aster and a
unity, the first stages of evolution are the lengthening ofyortex, respectively(b) The corresponding profile of motor density.
tubules as depicted in Figs(e3 and 3b), for timest=0.6  Gray scale indicates the value of motor density; darker shades in-
andt=1, respectively. During this stage, the directions ofdicate smaller values of motor density. The initial homogeneous
the tubules do not change and they remain randomly distribdensity evolves to obtain peaks at the centers of asters and vortices.
uted. The next stage involves reorientations of the tubules.

Since a uniform alignment is incompatible with the boundaryformation process. At low motor densities, we still observe a
conditions, an aster forms in the center as depicted in Fignixture of vortices and asters, followed by a collection of
3(c), for t=120. Motors are now transported along the tu-asters asn, is increased. However, at large motor density,
bules and accumulate at the center of the aster. At longeafter formation of a large vortex at the center, motors also
times, the aster pattern gives way to a vortex as in Fid) 3 pile up at several points on the boundary, as indicated in
for t=1200. The vortex pattern is stable, although its centefFig. 4.

may move around depending on the choice of boundary con- Equations(5) and(6) are deterministic, the only stochas-
ditions[26]. This dynamics is consistent with the experimen-ticity appearing through the initial conditions. However, ran-
tal observation that vortices form from the destabilization ofdomness and noise are certainly present in the experimental
asterg16]. situations. In particular, microtubules are known to con-

To model pattern formation in larger systems in whichstantly grow and shrink though a dynamic instability3, 14],
boundary effects are less important, we also performed simwwhile asters are still observed under such condit[@7$. To
lations with closed boundary conditions. This change in themake sure that the patterns observed in our simulations sur-
boundary condition does not qualitatively alter the patterrvive the addition of noise, we also introduced a stochastic

(b) X
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14 - - : - : : this study the tubules can grow to form quite long tracks, and
3 their density also falls off away from the aster center. These
= 1 differences in tubule behavidas opposed to our case where

tubules have uniform density and lengikead to predicted
power law decays of the motor density profile.
\ The aster and vortex configurations of tubules are related
e * ] to topological defects in th&XY model. However, they are

’ equivalent defects in th¥Y model as one can be deformed
into the other through a 90° rotation. The presence and rear-

oL x | rangement of motors in our problem breaks this symmetry
x and the two configurations become inequivalent. In particu-
2l “x | lar, the two defects have very different static enerdies
e «[d?rm(r)(VT)?/2. In the aster, the motors are concen-
o] . n " *‘*‘**:*“MN‘--:——“.%&W trated close to the center leading to a high strain energy. By

contrast, the motor density in a vortex is more uniform. Con-
sequently, for the same number of motors, a large aster has
much higher energy than a large vortex. Since the dynamics

8 | tends to minimize this energy, we have an explanation for
why asters give way to the more stable vortices. Presumably,
r * 1 finite size effects in smaller asters, of the order of the decay
ol N | length implicit in Eq.(8), account for their stability at small
x motor densities as in Fig.(@.
Est N
WL * | V. ARRESTED COARSENING

If the motor density is maintained at a uniform and fixed

3| \‘)K\ . .. .
g value, the dynamics of the tubules is identical to the coars-
o | e _ ening of anXY system following a quench from high tem-
o peratures. This problem has been extensively stufi€e-
i 5 s . s 5 - s s 1w 24] and (up to logarithmic correcltllzor)sthe typical length
(b) r scale of the pattern coarsensé&st™<. In our case, the mo-

tors rearrange themselves in the landscape of the tubules and
FIG. 5. (a) The points represent the profile of motor density in the coarsening scenario is modified when the motor density
an aster pattern formy=0.1 andC=100. The dashed line is a flyctuations become significant.
least-squares fit to the exponential decay 35.4exp((b) The At high motor densities there are enough motors left over
simulated profile of the motor density ofvartexfor me=0.2 and  after formation of asters and vortices to cause further rear-
C=1. The dashed line is the least-squares fit to the form,yngements of the tubules, and coarsening continues toward
—3.3In(/14.2). the final pattern consistent with the boundary conditions.
. . However, at low densities the motors quickly migrate to the
directed toward the center afid=—r, wherer is the unit  centers of asters and vortices. The little motor density left in
radial vector. Balancing the diffusive currenty,m with that  the regions between defects may then be too small to cause

transported along tubules gives an exponential form: further realignment of tubules which became frozen. We call
Mool F) = M(0)eXpl — 1) ®) this phenomenomrrested coarseningf tubules. The limit-
astek 1) = M(0) exp( : ing value ofm, for the onset of arrested coarsening in fact

This exponential profile is indeed verified by the simulationsdéPends on the growth constant of tubulzss indicated by
as depicted in Fig. @). the tentative “phase diagram” sketched in Fig. 6. More

The tubules go around the center of a vortex, dndd, simulations are necessary to establish the presence and na-

. i , ture of this transition.
where 6 indicates the tangential unit vector. Motors are then

transported in a uniform circular current by the tubules. To
ensure that there is no radial current of motors we need
dy(rdg;m)=0, whose solution is To further understand the patterns, we examine the equa-
Mo 1) = — M IN(/R) ) tions in one dimension, where more detailed simulations are
vorte ' possible. In particular, we consider scalar fietdéx,t) and
T(x,t) evolving as

VI. ONE DIMENSION

whereR is a long distance cutoff, of the order of the vortex
size. A logarithmic fit to the simulated vortex motor density

profile is shown in Fig. &). gm=gZm—d,(Tm), (10
The profile of motors in quasi-two-dimensional asters has
been studied theoretically and experimentally in R&®]. In FT=C(T—T3)+ dy(ma,T). (11
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FIG. 6. The phase boundary in the planewfand log,C. To ) ) )
the right of the boundary the pattern coarsens to a large vortex. The F!G: 7. The profiles of motor densitidashed ling and tubule
arrested coarsening on the left side leads to frozen asters and vdtientation(solid line) in one dimension wittia) periodic boundary
tices, with the aster pattern becoming more dominantngsin-  conditionsfor mg=0.02 andC=1 and(b) reflecting boundary con-
creases. ditions for my=0.4 andC=1. In (a), the whole pattern moves as

indicated by the arrow, with a fixed speed. (o), the cluster of
Quasi-one-dimensional movement of myosin motors occursiotors moves as indicated by the arrow, but its direction is reversed
along bundles of actin filaments in muscle contraction, andit each boundary, as the profile oscillates back and fécihThe
may also be responsible for other types of cell mofiBh  average tubule domain size in a one-dimensional system of léngth
Bundles of actin molecules can be formiedvitro in mix-  with closed boundary conditions, as a function of average motor
tures with other inert polymers. These bundles consist oflensitym, for C=1. (d) The profiles of tubule orientation and
random mixtures of actin molecules oriented in the two posimotor density(solid and dashed lines, respectiveigr my=0.1 and
sible directions. However, in the presence of myosin motor€=1, in a one-dimensional system with closed boundaries.
and ATP, there is a sorting of polarif{28,29 and active

contraction of polar filament30]. To describe such a con-  If Mo is smaller tharm,, a final state emerges in which
traction we need to incorporate additional terms describinghe motors gather together in a cluster that moves around the
the transport of tubules along tubules. oop with a constant velocity. The tubules are again ordered

A potential experimental setup for the above equations i one direction, except near the cluster, where they briefly
a modified version of that used in RdfL6], with motor/  take the opposite alignment. Figuréal’shows the configu-
tubule mixtures confined in quasi-one-dimensional channelgations of the tubules and the profile of the motor density for
etched in glass. In addition to periodic channels, it may bany=0.02<m;. We have verified by direct numerical inte-
possible to model closed and reflecting boundaries by appraration that Eqs(10) and (11) do indeed support such a
priate treatment of the edges. In fact, we observe that theolitonic solution. However, the mathematical details are not
solutions to Eqs(10) and(11) are quite sensitive to bound- in the spirit of this article, and will be presented elsewhere.
ary conditions. Specifically, simulations show the following  (ii) Reflecting boundary conditionsere imposed by re-
results. quiring the tubules at the edges to point inward, [.&(0)

(i) Periodic boundary conditiongorrespond to placing =+1 andT(L)= —1]. There is an initial coarsening period
the system on a closed loop. We observe two types of symin which domains of+1 and —1 grow inward from the
metry breaking depending on the initial density of motors. Ifrespective edges. However, in the final pattern the boundary
mg is larger than a critical value ofh, (m.~0.04 for C between the+1 and —1 domains is not stationary, but
=1), the tubule pattern coarsens until the tubules are akweeps back and forth across the system. The motors are
aligned in one directionT=+1 or —1). This is accompa- again concentrated at the interface, with a solitonic profile as
nied by a uniform current of motors that goes around thandicated in Fig. Tb).
system. This symmetry breaking is similar to that of an Ising (iii) Closed boundary conditionsvere also applied, with
model. However, unlike the equilibrium Ising model, hereno restrictions on the value df at the edges, but setting the
the broken symmetry survives in the presence of randonoutward motor current to zero. Above a critical motor den-
noise (simulating finite temperaturgsn Eq. (11). Any do-  sity, coarsening of tubules proceeds to a single domain of the
mains of opposite spin formed due to randomness are arsize of the system,. Following the tubules, the motors then
nealed by a rush of motors to the domain walls. The symmepile up at one end of the system. The low density behavior in
try breaking in the presence of noise is due to the advectiothis case is similar to the arrested coarsening observed in the
term in Eq.(10) and active transportation of motors along the two-dimensional case: The initial growth of1 and —1
tubules. Indeed we checked that when the advection term idomains is stopped at some point due to the local absence of
removed, the presence of noise in Efl) leads to finite motors necessary for continuing realignments. Figui® 7
domains. shows the average domain size, as a function of the average
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motor density. At the point when tubule evolution is stopped,perimental patterns are reproduced. As in the experiments,
the motor density has peaks at (—) domain boundaries. we observe arrays of asters and vortices, and large single
However, as time goes on, there is a slower ripening processortices (formed from the breakup of astgrsA surprising
in which the motors gradually diffuse against the unfavor-general outcome is the robustness of the patterns to external
able domains, and eventually aggregate at one point in theoise. Many of the large scale features obserggunmetry
system, as in Fig.(d). (It is not clear if this process is truly breaking or large vorticgsare easily destroyed in equilib-
absent in two dimensions, or merely takes too long to obfium by thermal noise, but are maintained in the nonequilib-
serve in simulations. There are similarities to the localizatiorrium steady states.
problem in which 2 is a critical dimension. The limitations of the model are also due to the limited
There are similarities in the above behaviors to patterngnput. For example, at high densities of motors the experi-
and phase transitions in other one-dimensional nonequilibments lead to irregularly arranged bundles of tubules; a fea-
rium processes. A localization transition is observed in aure not present in our model. To reproduce the observed
population with diffusion, drift, and reproduction in Refs. sequence of patterns, more physical input into the equations
[31-33. This model of a bacterial colony living on an oasis is necessary. A potential modification is to impose a satura-
in the presence of randomly fluctuating wind shows ex-tion on the ability of motors to align tubules at high motor
tended, localized, mixed states, as well as extinction, as densities. Indeed, such saturation generates an irregular pat-
function of the average growth rate and convection velocitytern of tubules, instead of a large vortex, at high motor den-
In our model, the tubule@n their disordered statgprovide a  sities.
similar source of random advection. Ordered states are also A simple yet relevant extension of our model is to con-
observed in a lattice model with two species of particles insider mixtures of tubules with two types of motor, kinesin
which the mobility of one species depends on the density odnd dyenin, which are transported in opposite directions
the othe34,35. This model exhibits three phases: one with[37]. Preliminary simulations indicate various patterns such
strong phase, a fluctuation-dominated phase, and anothas asters, antiasters, and vortices, but a global phase diagram
with uniform overall density. The couplings in our system has not yet been constructed. Another interesting extension is
between motors and tubules have similarities to the latteto examine the patterns predicted by the model in three di-
model, although the enforced conservation laws are differeninensions; corresponding simulations are straightforward, al-

(there is no conservation of tubule orientatipns beit more time consuming.
Independent of their relevance to the motor/tubule system,
VII. DISCUSSION the equations presented in this paper exhibit a variety of

. . o interesting behavior worthy of further investigation. From

As in the case of driven diffusive systertsee Ref[36]  the perspective of statistical mechanics it is interesting to
for a recent reviey the rich variety of behavior observed in rigorously characterize the distinct phases encountered, and
the relatively simple equations introduced in this paper is dughe nature of the transitions between them. The symmetry
to their nonequilibrium character. In the realm of equilib- preakings in one dimension are particularly interesting as
rium, for example, one-dimensional systems at nonzero teMney do not have equilibrium counterparts. The solitonic so-
perature are featureless and disordered. Clearly, nonequiliyytions to these equations can be further explored by standard
rium effects can lead to symmetry breaking, and a richmathematical methods. Finally, with a view to describing the

interplay of behaviors sensitive to boundaries. Biologicalgontraction of muscle fibers, the addition of drift terms to the
systems can take advantage of such phenomena, and shoglglation for tubules is desirable.

indeed provide many interesting patterns in need of explana-
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